



# 1 Large particulate nitrate formation from N<sub>2</sub>O<sub>5</sub> uptake in a

## 2 chemically reactive layer aloft during wintertime in Beijing.

Haichao Wang<sup>1</sup>, Keding Lu<sup>1</sup>\*, Xiaorui Chen<sup>1</sup>, Qindan Zhu<sup>1,#</sup>, Zhijun Wu<sup>1</sup>, Yusheng
 Wu<sup>1</sup>, Kang Sun<sup>2</sup>

5 <sup>1</sup>State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of

6 Environmental Sciences and Engineering, Peking University, Beijing, China

7 <sup>2</sup>China National Environmental Monitoring Centre, Beijing, China

8 <sup>#</sup>Now at the Department of Chemistry, University of California, Berkeley, CA 94720, USA

9

10 \*Correspondence to: *Keding Lu* (<u>k.lu@pku.edu.cn</u>)

11

## 12 Abstract.

13 Particulate nitrate (pNO3<sup>-</sup>) is a dominant component of secondary aerosols in urban 14 areas. Therefore, it is critical to explore its formation mechanism to assist with the 15 planning of haze abatement strategies. Simultaneous ground-based and tower-based 16 measurements were conducted during a winter heavy haze episode in urban Beijing, 17 China. We found  $pNO_3^-$  formation via  $N_2O_5$  heterogeneous uptake was negligible at ground level, due to the presence of high NO concentrations limiting the production 18 of N2O5. In contrast, the contribution from N2O5 uptake was larger at higher altitudes 19 20 (e.g., > 150 m), which was supported by the observed large total oxidant (NO<sub>2</sub> + O<sub>3</sub>) missing aloft compared with ground level. The nighttime integrated production 21 potential of pNO3<sup>-</sup> for the higher altitude air mass overhead urban Beijing was 22 estimated to be 50  $\mu$ g m<sup>-3</sup>, and enhanced the surface pNO<sub>3</sub><sup>-</sup> significantly with 28  $\mu$ g 23  $m^{-3}$  after nocturnal boundary layer broken in the next morning. In this case, the 24 oxidation of NO<sub>x</sub> to nitrate was maximized once  $N_2O_5$  uptake coefficient over 0.0017, 25 since N2O5 uptake dominated the fate of NO3 and N2O5 with the presence of large 26 aerosol surface concentrations. These results highlight that pNO3<sup>-</sup> formation via N2O5 27





heterogeneous hydrolysis at higher altitude air masses aloft could be an important
source for haze formation in the urban airshed during wintertime. Accurately
describing the formation and development of reactive air masses aloft is a critical task
for improving current chemical transport models.

32

## 33 **1. Introduction**

Winter particulate matters (PM) pollution events occur frequently in China, and have 34 drawn widespread and sustained attention in recent years (Guo et al., 2014; Zhang et 35 al., 2015; Huang et al., 2014). PM pollution reduced visibility (Lei and Wuebbles, 36 2013) and had harmful effects on public health (Cao et al., 2012). Particulate nitrate 37 38  $(pNO_3)$  is an important component of secondary inorganic aerosols, and contributed to 15–40% of the PM<sub>2.5</sub> mass concentration in China (Sun et al., 2013, 2015a, 2015b; 39 40 Chen et al., 2015; Zheng et al., 2015; Wen et al., 2015). The main atmospheric pathways of nitrate formation are (1) the reaction of OH with NO2 and (2) N2O5 41 heterogeneous hydrolysis (Seinfeld and Pandis, 2006). The first reaction (OH + NO<sub>2</sub>) 42 43 was a daytime pathway since OH is severely limited at night, and N<sub>2</sub>O<sub>5</sub> uptake was refer to a nighttime pathway as NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> is easily photo-labile. 44

45 Nitrate formation via N2O5 heterogeneous hydrolysis was proved efficient by ground based observation in summer in North China (H.C. Wang et al., 2017b; Z. 46 Wang et al., 2017), which is comparable with or even high than the daytime formation. 47 Several model studies showed N<sub>2</sub>O<sub>5</sub> hydrolysis is responsible for nocturnal pNO<sub>3</sub><sup>-</sup> 48 49 enhancement in Beijing (Pathak et al., 2009, 2011; H.C. Wang et al., 2017a). Although the pNO<sub>3</sub><sup>-</sup> formation via  $N_2O_5$  uptake is significant in summertime, the importance of 50 this pathway in wintertime was not well characterized. As there are many differences 51 of N<sub>2</sub>O<sub>5</sub> chemistry between winter and summer. First, as the key precursor of NO<sub>3</sub> and 52  $N_2O_5$ ,  $O_3$  level are much lower in winter than in summer due to short daytime length 53 and weak solar radiation. Second, colder temperatures and high NO<sub>2</sub> levels favor 54 partitioning towards N2O5. Third, nighttime lasts much longer in winter, making N2O5 55 heterogeneous hydrolysis potentially more important in pNO3<sup>-</sup> formation. Finally, 56





57  $N_2O_5$  uptake coefficient, the most important parameter in  $N_2O_5$  heterogeneous hydrolysis, is likely very different from that in summer. Since the particle 58 characteristics and meteorological conditions (e.g. organic compounds, particle nitrate, 59 liquid water contents, solubility, viscosity and relative humidity) are different in 60 summer and winter (Chen et al., 2015; Zhang et al., 2007). These differences would 61 result in the N2O5 uptake coefficient has large variation (Wahner et al., 1998; Mentel 62 et al., 1999; Kane et al., 2001; Hallquist et al., 2003; Thornton et al., 2003; Bertram 63 and Thornton, 2009; Grzinic et al., 2015; Wagner et al., 2013). 64

In addition to seasonal differences, previous studies have also shown a potential 65 altitude dependence in pNO<sub>3</sub><sup>-</sup> production. In the evening, vertical mixing is strong 66 suppressed in nocturnal boundary layer (NBL) due to the reduction of sunlight 67 diminishes the heating of the earth's surface, leading to vertical layer occur with NO<sub>3</sub> 68 and N<sub>2</sub>O<sub>5</sub> gradient (Brown et al., 2007), as well as the particle compounds percentage 69 and size distribution (Ferrero et al., 2010; 2012). On nights when NO3 radical 70 production in the surface layer is negligible due to high NO emissions, N<sub>2</sub>O<sub>5</sub> uptake 71 may still be active aloft without NO titration (Pusede et al., 2016; Baasandorj et al., 72 73 2017). The N<sub>2</sub>O<sub>5</sub> uptake aloft leads to elevated  $pNO_3^{-1}$  formed in the upper layer with 74 effective NO<sub>X</sub> removal (Watson et al., 2002; S.G. Brown et al., 2006; Lurmann et al., 75 2006), which was reported with field observations at a high altitude site in Kleiner 76 Feldberg, Germany (Crowley et al., 2010a), London British Telecommunications tower, UK (Benton et al., 2010), Boulder Atmospheric Observatory (BAO) tower in 77 Colorado, USA (Wagner et al., 2013) and so on. Model studies also proposed nitrate 78 79 formation varied in different height (Kim et al., 2014; Ying, 2011; Su et al., 2017). The mass fraction and concentration of pNO<sub>3</sub> in Beijing was reported higher aloft 80 (260 m) than at the ground in Beijing (Chan et al., 2005; Sun et al., 2015b), and they 81 explained the favorable gas-particle partitioning aloft under lower temperature 82 conditions. 83

To explore the possible sources of  $pNO_3^-$  and the dependence of altitude in wintertime, we conducted vertical profile measurements of NO, NO<sub>2</sub>, and O<sub>3</sub> with a tower platform in combination with simultaneous ground measurements of these





- parameters in urban Beijing. A box model was used to investigate the reaction rate of N<sub>2</sub>O<sub>5</sub> heterogeneous hydrolysis and impact on  $pNO_3^-$  formation at different altitudes during a heavy haze episode over urban Beijing. Additionally, the dependence of  $pNO_3^-$  formation on the N<sub>2</sub>O<sub>5</sub> uptake coefficient was probed.
- 91

## 92 **2. Methods**

#### 93 2.1 Field measurement

Ground measurement (15 m above the ground) was carried out in the campus of 94 Peking University (PKU, 39 59'21"N, 116 18'25"E) in Beijing, China. The location 95 96 of the PKU site was shown in Fig. 1, as well as the vertical measurement site (IAP, introduced below). At PKU site, dry-state mass concentration of PM<sub>2.5</sub> was measured 97 by a TEOM 1400A analyzer. NOx was measured by chemiluminescence analyzer 98 (Thermo Scientific, TE-42i-TR) and  $O_3$  was measured by a UV photometric  $O_3$ 99 analyzer (Thermo Scientific, TE-49i). Dry state particle number and size distribution 100 (PNSD) was measured from 0.01 to 0.6 µm with a Scanning Mobility Particle Sizer 101 (SMPS, TSI Inc. 3010). These parameters were listed in Table S1. The data were 102 103 collected from December 16 to 22, 2016. Additionally, relative humidity (RH), 104 temperature (T), wind direction and speed were available during the measurement 105 period.

Vertical profile measurements were conducted from December 18 to 20, 2016 at the 106 tower-based platform (maximum height: 325 m) on the campus of the Institute of 107 Atmospheric Physics, Chinese Academy of Sciences (IAP, 39 58'28"N, 116 22'16"E), 108 109 during a heavy PM pollution episode. The IAP site is just with 4 km distance from the PKU site. The measurement instruments were installed on board a movable cabin on 110 the tower. The ambient NOx and O3 concentrations were measured with two 111 low-power, light-weight instruments (Model 405 nm and Model 106-L; 2B 112 Technologies, USA). The Model 405 nm instrument measures NO<sub>2</sub> directly based on 113 the absorbance at 405 nm, and NO is measured by adding excess O<sub>3</sub> (conversion 114 115 efficiency  $\sim 100\%$ ). The limit of detection of both NO and NO<sub>2</sub> is 1 part per billion





116 volume (ppbv), with an accuracy of 2 ppbv or 2% of the reading, and the time resolution is 10 s. The Model 106-L instrument measures O<sub>3</sub> based on the absorbance 117 at 254 nm with a precision of 1 ppbv or 2% of the reading and a limit of detection of 3 118 119 ppbv. Height information was retrieved from the observed atmospheric pressure measured by Model 405 nm instrument. The cabin ascended and descended at a rate 120 of 10 m min<sup>-1</sup>, with a height limit of 260 m at daytime and 240 m at night. The cabin 121 stopped after reaching the peak and parameters were measured continually for the last 122 10 min of each cycle. One vertical cycle lasted for approximately 1 h. We measured 123 two cycles per day, one in the morning and the other in the evening. 124

125

#### 126 **2.2 Box model simulation**

A box model was used to model the NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> mixing ratios and the nitrate 127 formation potential in vertical scale at IAP site. A simple chemical mechanism (see 128 R1-R5) is used to model the nighttime NO3 and N2O5 chemistry in NO free air masses, 129 130 and the physical mixing, dilution, deposition, or interruption during the transport of the air mass were not considered. Here f represents the ClNO<sub>2</sub> yield from  $N_2O_5$  uptake. 131 Homogeneous hydrolysis of  $N_2O_5$  and  $NO_3$  heterogeneous are neglected in this 132 analysis because there is little absolute humidity and extremely low NO3 133 concentration during wintertime (Brown and Stutz, 2012). The corresponding rate 134 constants of R1- R3 are those reported by Sander et al., (2011). 135

- 136 (R1)  $NO_2 + O_3 \rightarrow NO_3 + O_2$
- 137 (R2)  $NO_2 + NO_3 + M \rightarrow N_2O_5 + M$
- 138 (R3)  $N_2O_5 + M \rightarrow NO_2 + NO_3 + M$
- 139 (R4)  $NO_3 + VOC_5 \rightarrow Products$
- 140 (R5)  $N_2O_5 + (H_2O \text{ or } Cl^-) \rightarrow (2-f) NO_3^- + f ClNO_2$

Following the work of Wagner et al., (2013), the box model can be solved by four equations (Eq. 1-4). In the framework,  $O_3$  only losses via the reaction of  $NO_2+O_3$  and the change of the  $O_3$  concentration can express as Eq. 1. Since the ratio of  $N_2O_5$  to  $NO_3$  was calculated to be larger than 150:1 in a typical urban region in wintertime





145  $(NO_2 = 15 \text{ ppbv, nighttime temperature} = 0 \text{ °C}), N_2O_5 \text{ is proposed to be dominate the}$ NO<sub>3</sub> loss, than means two molecules of NO<sub>2</sub> lost (convert to nitrate or ClNO<sub>2</sub>) for one 146 molecule NO<sub>3</sub> formed (Eq. 2). In the model we need to know the mixing ratio of NO<sub>2</sub> 147 148 and  $O_3$  at time zero (here set to sunset). According to Eq. 1 and Eq. 2, the NO<sub>2</sub> (t=0) and O<sub>3</sub> (t=0) concentration can derived from the duration time and the vertical 149 measured NO<sub>2</sub> and O<sub>3</sub> at each height. Assuming the equilibrium between NO<sub>3</sub> and 150 N2O5 is maintained after a time period, the sum concentration of NO3 and N2O5 can 151 be described by Eq. 3. Using the temperature dependent equilibrium rate constant  $(k_{eq})$ 152 and the modeled  $NO_2$  at a certain time, Eq. 4 can be used to determine the ratio of 153 N<sub>2</sub>O<sub>5</sub> and NO<sub>3</sub>. Combined, Eq. 1-4 allow for the calculation of N<sub>2</sub>O<sub>5</sub> concentrations, 154 given a constant of NO3 and N2O5 rate constant (kN03 and kN2O5). Modeled N2O5 155 156 concentrations and given  $k_{N205}$  are then used to estimate pNO<sub>3</sub><sup>-</sup> formation, here the HNO<sub>3</sub> produced in R4 is not accounted, as a large part of the products are organic 157 158 nitrates (Brown and Stutz, 2012). Here k<sub>NO3</sub> and k<sub>N205</sub> denotes the pseudo first order reaction rate constant of the total NO3 reactivity caused by ambient volatile organic 159 compounds (VOCs) and N<sub>2</sub>O<sub>5</sub> heterogeneous uptake, respectively. k<sub>N2O5</sub> is given in 160 161 Eq. 5.  $S_a$  is aerosol surface area, C is the mean molecular speed of N<sub>2</sub>O<sub>5</sub>, and  $\gamma_{N2O5}$  is  $N_2O_5$  uptake coefficient. The model is run from sunset to sunrise, where the length of 162 163 night was about 14.5 h.

164 (Eq. 1) 
$$\frac{d[0_3]}{dt} = -k_{NO2+O3}[0_3][NO_2]$$

165 (Eq. 2) 
$$\frac{d[NO_2]}{dt} = -2 \times k_{NO2+O3}[O_3][NO_2]$$

166 (Eq. 3) 
$$\frac{d[NO_3+N_2O_5]}{dt} = k_{NO2+O3}[O_3][NO_2] - k_{N2O5}[N_2O_5] - k_{NO3}[NO_3]$$

167 (Eq. 4) 
$$\frac{[N_2O_5]}{[NO_3]} = k_{eq}[NO_2]$$

168 (Eq. 5) 
$$k_{N205} = \frac{C \times S_a \times \gamma_{N205}}{4}$$

Dry-state  $S_a$  at PKU site was calculated based on the PNSD measurement, which was corrected to ambient (wet)  $S_a$  for particle hygroscopicity by a growth factor (Liu et al., 2013). The uncertainty of the wet  $S_a$  was estimated to be ~30%, which was associated from the error from dry PNSD measurement (~20%) and the growth factor





173 (~20%). Nighttime averaged  $S_a$  on the night of December 19 is about 3000  $\mu$ m<sup>2</sup> cm<sup>-3</sup>. 174 PM measurements by National Monitoring Sites proved this heavy haze pollution 175 episode was a typical regional event (Fig. S1). Furthermore, synchronous study on the 176 night of December 19, 2016 shown small variation of vertical particle number 177 concentration, with the boundary layer height below 340 m (Zhong et al., 2017). 178 Therefore, the  $S_a$  at PKU site is representative to the urban Beijing conditions and 179 applied in the model is reasonable.

 $N_2O_5$  uptake coefficient was regard as the main uncertainty of the  $N_2O_5$  loss, along 180 with the ClNO<sub>2</sub> yield lead to the uncertainties in the estimation of particulate nitrate 181 formation (Thornton et al., 2010; Riedel et al., 2013; Wagner et al., 2013; Phillips et 182 al., 2016). Wagner et al., (2013) shows the significant particular nitrate suppression 183 aloft in the wintertime in Denver, USA, with the uptake coefficient of about 0.005 184 when particulate nitrate fraction in the PM<sub>2.5</sub> mass concentration about 40%. 185 186 Considered the high particle nitrate content in North China in wintertime is similar to 187 that in Denver (Sun et al., 2013, 2015a; Chen et al., 2015; Zheng et al., 2015; Wen et al., 2015), here we used a constant uptake coefficient of 0.005 as the model initial 188 189 input in the base case, and the uncertainty of  $N_2O_5$  uptake coefficients will be discussed later. Since the model input of ClNO<sub>2</sub> yield only affect the value of 190 produced particulate nitrate concentration, and would not change the modeled N2O5 191 concentration, here we set the initial  $f_{CINO2}$  to zero. The impact of CINO<sub>2</sub> yield will be 192 further discussed later. 193

Respect to k<sub>NO3</sub>, the average value in summertime was estimated to be 0.024 s<sup>-1</sup> in 194 195 2006 (H.C. Wang et al., 2017a). While in wintertime, the  $k_{NO3}$  should be smaller as the intensity of plant emissions reduced in the lower temperature and weak solar 196 radiation. The model input k(NO<sub>3</sub>) was set to an relative moderate value of 0.02 s<sup>-1</sup> 197 (equivalent to 0.2 ppbv isoprene + 40 pptv monoterpene + 1.0 ppbv cis-2-butene). A 198 series of sensitivity tests were conducted to study the uncertainties to the model 199 simulation, and the detailed test set were listed in Table 1, included the test of  $N_2O_5$ 200 uptake coefficient and  $k_{NO3}$ . The  $\gamma_{N2O5}$  sensitivity tests were set to a lower limit of 201 0.001 to a upper limit of 0.05, as well as the  $k_{NO3}$  set to 0.001, 0.01 and 0.1 s<sup>-1</sup>. 202





## 203 **3. Results and discussion**

#### 204 **3.1 Ground-based observations.**

205 A severe winter PM pollution event was captured from the ground observations from December 16 to 22, 2016 in Beijing. Figure 2a shown the mass concentration of PM<sub>2.5</sub> 206 began to increase on December 16 and reached the maximum value of 480 µg m<sup>-3</sup> 207 208 December on 20. A fast PM growth event happened on the night of December 19-20 (colored red in Fig. 2a), the PM<sub>2.5</sub> mass concentration increased continuously 209 throughout the night, with an overall increment of 100 µg m<sup>-3</sup>. During the episode, the 210 meteorological condition is featured with high RH (50%  $\pm 16\%$ ) and low temperature 211  $(2 \pm 3 \text{ °C})$ . The slow surface wind (< 3 m s<sup>-1</sup>) indicated the atmosphere was static 212 stabilized (Fig. 2c, 2d). The daytime  $O_3$  concentration was low due to high NO 213 214 emission and weak solar radiation. After sunset, O3 was rapidly titrated to zero by the 215 elevated NO. The presence of high NO concentrations would have strongly 216 suppressed the concentration of NO<sub>3</sub>, and further suppressed  $N_2O_5$  near the ground. Figure 2b depicted large amounts of NO and NO2 were observed throughout the 217 whole PM pollution episode, suggesting that pNO3<sup>-</sup> production via N2O5 uptake was 218 219 not important near the ground during the winter haze episode.

220

## 221 **3.2 Tower observations.**

222 Six vertical measurements of Ox (< 50 m) was consist with that measured at ground level and shown in Fig. S2, confirmed the two sites are comparable at ground level at 223 last. On the night of December 20 (Fig. 3a), the NO<sub>2</sub> and NO from 0-240 m were 224 abundant and conservative around 21:00, with the concentration of 80 ppbv and 100 225 ppbv, respectively. The O<sub>3</sub> concentrations keep zero during the nighttime (Fig. 3b). 226 The vertical profile on December 20 suggests that at least below 240 m, the N<sub>2</sub>O<sub>5</sub> 227 228 chemistry is also not important like ground level as mentioned above. The case on the 229 night of December 18 is similar to the night of December 20.

230 The vertical measurement on December 19 did not like those happened on





231 December 18 and 20. Figure 4a shows the vertical profiles around 21:00 on December 19 that NO was abundant from the ground to 100 m, then gradually decreased to zero 232 from 100 m to 150 m, and stay zero above 150 m. The observed NO<sub>2</sub> concentration 233 234 was 85  $\pm$  2 ppbv below 100 m, which gradually decreased from 100 m to 150 m, and was 50  $\pm$  2 ppbv from 150 m to 240 m. The observed O<sub>3</sub> concentrations were below 235 the instrument limit of detection below 150 m (Fig. 4b). Above 150 m, the O3 236 concentration was 20  $\pm$  2 ppbv, corresponding to the greatly diminished NO 237 concentration. With respect to the total oxidants ( $Ox = O_3 + NO_2$ ), the mixing ratio of 238 Ox was  $85 \pm 2$  ppby at lower altitudes, while the Ox concentration at higher altitudes 239 was 15 ppbv lower than that at lower altitude (Fig. 4b). The O<sub>X</sub> missing at the higher 240 altitude air mass indicated an additionally nocturnal removal of Ox aloft. 241

242 Figure 5 depicted the vertical measurement at 09:30 on the morning of December 20 has similar features with those observed at 21:00 on December 19, and the NBL 243 244 still not be broken. The  $O_X$  missing aloft in the morning increased to 25 ppbv at 245 240–260 m, demonstrated that an additional 25 ppbv of Ox was removed or converted to other compounds at higher altitudes than surface layer on the night of December 246 247 19-20. Figure S3 shows the vertical profiles of NO, NO<sub>2</sub>, O<sub>3</sub> and Ox at ~12:00 on December 18, when the solar radiation is strong enough to drive the trace gas mixing 248 249 well in vertical direction. NOx and O3 were observed well mixed indeed, with small 250 variation from ground level to 260 m.

251

## 252 **3.3 Particulate nitrate formation aloft.**

N<sub>2</sub>O<sub>5</sub> uptake is one of the two most important pathways of the ambient NO<sub>x</sub> losses, and is consequently an important pathway of  $pNO_3^-$  formation (Wagner et al., 2013; Stutz et al., 2010; Tsai et al., 2014). At higher altitudes (e.g. > 150 m), NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> chemistry can be initiated in the co-presence of high NO<sub>2</sub> and significant O<sub>3</sub> levels. Therefore, N<sub>2</sub>O<sub>5</sub> uptake could represent a plausible explanation for the observed O<sub>x</sub> missing in the higher-altitude air masses on the night of December 19. To explore this phenomenon, a time-step box model was used to simulate the NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub>





260 chemistry based on the observed vertical profiles of  $NO_2$  and  $O_3$  on the night of 261 December 10

261 December 19.

In the base case, the modeled  $N_2O_5$  concentration is zero below 150 m, as the high level NO consumed NO<sub>3</sub> formation fast. While the modeled  $N_2O_5$  concentrations at 21:00 were in the range of 400-600 parts per trillion volume (pptv) above 150 m (Fig. 5a). pNO<sub>3</sub><sup>-</sup> accumulation via  $N_2O_5$  heterogeneous hydrolysis from sunset to the measurement time was significant, yielding a maximum of 24 µg m<sup>-3</sup> within 4.5 hours after sunset (Fig. 5(b)).

The box model enabled the analysis of the integrated  $pNO_3^-$  and  $ClNO_2$  via  $N_2O_5$ 268 uptake over the whole night. As shown in Fig. 5c, the modeled integrated pNO<sub>3</sub><sup>-</sup> went 269 up to as high as 50  $\mu$ g m<sup>-3</sup>. The integrated pNO<sub>3</sub><sup>-</sup> at sunrise was equal to the loss of 27 270 ppbv  $O_X$ , shows a good agreement with the observed  $O_X$  missing aloft at the morning 271 hours. During the nighttime, the formed pNO3<sup>-</sup> aloft via N2O5 uptake would lead to 272 273 the particle nitrate concentration much higher than that in the surface layer, which has 274 been reported many field observations (Watson et al., 2002; S.G. Brown et al., 2006; Lurmann et al., 2006; Ferrero et al., 2012; Sun et al., 2015b). In addition, during the 275 276 morning time when NBL was broken, the elevated pNO<sub>3</sub><sup>-</sup> aloft will vertically mixed and enhanced the PM concentration at surface layer, this phenomenon also been 277 278 observed in previous studies (Watson et al ., 2002; S.G. Brown et al., 2006; Lurmann 279 et al., 2006). In this case, the planetary boundary layer (PBL) height during the daytime is about 340 m on December 20 (Zhong et al., 2017). Assuming that the 280 height of NBL and planetary boundary layer (PBL) are the same, and the air mass was 281 282 well mixed in the following morning in the PBL. The nighttime  $N_2O_5$  uptake aloft would be enhanced the ground pNO<sub>3</sub><sup>-</sup> mass concentration significantly with 28  $\mu$ g m<sup>-3</sup> 283 in the morning, which is in good agreement with the observed PM peak in the 284 morning on December 20, with the PM enhancement of ~60  $\mu$ g m<sup>-3</sup>. The result 285 demonstrated that the nocturnal  $N_2O_5$  uptake aloft and downward transportation are 286 287 really importance in understanding the PM growth process.





## 289 **3.4 Sensitivity studies.**

Previous studies have emphasized that the  $N_2O_5$  uptake coefficient varies greatly 290 (0.001–0.1) in different ambient conditions (Brown and Stutz, 2012; H.C. Wang et al., 291 292 2016), which is the main source of uncertainties in the model. Sensitivity tests 293 illustrate that the modeled  $N_2O_5$  concentration varied from 3 ppbv to 60 pptv when the  $N_2O_5$  uptake coefficients were varied from 0.001 to 0.05 (Fig. 6a), the  $N_2O_5$ 294 concentration is very sensitivity to the loss from heterogeneous reaction. Compared 295 296 with the base case, the accumulated pNO<sub>3</sub> is evidently lower at  $\gamma = 0.001$  with the accumulated pNO<sub>3</sub><sup>-</sup> of 44  $\mu$ g m<sup>-3</sup>, the low N<sub>2</sub>O<sub>5</sub> uptake coefficient condition is 297 corresponding to several kinds of aerosols, such as secondary organic aerosol (Gross 298 et al., 2009), humic acid (Badger et al., 2006)) and certain solid aerosols (Gross et al., 299 2008). When the  $N_2O_5$  uptake coefficient enlarges from 0.005 to 0.05 (Fig. 6b, c), the 300 301 integral pNO<sub>3</sub><sup>-</sup> almost not change with negligible increasing, indicating that the conversion capacity of N2O5 uptake to pNO3<sup>-</sup> was almost maximized at certain ClNO2 302 yield, the convert capacity of NOx to nitrate was not limited by N<sub>2</sub>O<sub>5</sub> heterogeneous 303 reaction rate, but the formation of  $NO_3$  by the reaction of  $NO_2$  with  $O_3$ . 304

For describing the nocturnal NOx convert capacity to particulate nitrate via N<sub>2</sub>O<sub>5</sub> uptake coefficient, here we defined the particle nitrate convert efficiency ( $\epsilon$ ) as Eq. 6. The  $\Delta t$  represents the time duration from time zero at sunset till the ending time at sunrise.

309 (Eq. 6) 
$$\epsilon = \frac{\sum_{0}^{\Delta t} k_{N205}[N_2 O_5]}{\sum_{0}^{\Delta t} 2 \times k_{N02+O3}[O_3][NO_2]}$$

In the case,  $S_a$  is set to 3000  $\mu$ m<sup>2</sup> cm<sup>-3</sup>, the ClNO<sub>2</sub> yield is zero and k<sub>NO3</sub> is 0.02 s<sup>-1</sup>. 310 Figure 7 shows the dependence of the particle nitrate convert efficiency varied from 311  $10^{-5}$  to 0.1. When  $\gamma_{N205}$  is lower than 0.0017, the particle nitrate formation enhanced 312 rapidly with the increasing of N<sub>2</sub>O<sub>5</sub> uptake coefficient, here we defined as the  $\gamma_{N2O5}$ 313 sensitive region when  $\gamma_{N205} < 1.7 \times 10^{-3}$ . While  $\gamma_{N205} \ge 1.7 \times 10^{-3}$  is defined as  $\gamma_{N205}$ 314 insensitive region, since the convert efficient is over 90% and not sensitive to the 315 316 variation of  $N_2O_5$  uptake coefficient. According to Eq. 3 and Eq. 5, higher aerosol 317 surface concentration, higher NOx, lower  $k_{NO3}$  and temperature would further





318 enlarging the insensitivity region with lower  $\gamma_{N205}$  value, and make the N<sub>2</sub>O<sub>5</sub> uptake more easily located in the  $\gamma_{N205}$  insensitive region. Here the critical value of the N<sub>2</sub>O<sub>5</sub> 319 uptake coefficient  $(1.7 \times 10^{-3})$  is relative low compared with that IUPAC (International 320 321 Union of Pure and Applied Chemistry) recommended on the surface of mineral dust (0.013, 290-300K) (Crowley et al., 2010b) or determined in many field experiments 322 (e.g. S.S. Brown et al., 2006; 2009; Wagner et al., 2013; Morgan et al., 2015; Phillips 323 et al., 2016; Z. Wang et al., 2017; Brown et al., 2016; H.C. Wang et al., 2017b; X.F. 324 Wang et al., 2017), suggesting the particulate nitrate formation via  $N_2O_5$  uptake was 325 easily maximized in polluted episode, and further worsen the PM pollution. 326

In the base case, the modeled particulate nitrate formation via N<sub>2</sub>O<sub>5</sub> uptake is an 327 upper limit result, as the ClNO<sub>2</sub> yield set to zero. Since large coral combustion 328 329 emitted chloride into the atmosphere in the heating period in Beijing (Sun et al., 2013), associated with the emission by power plants in North China. The enhanced 330 331 anthropogenic emission of chloride provides abundant chloride-containing aerosol to 332 form  $ClNO_2$  via  $N_2O_5$  uptake aloft, implying that significant  $ClNO_2$  formed in the upper layer of NBL (Tham et al., 2016; Z. Wang et al., 2017). Assuming the ClNO<sub>2</sub> 333 334 yield is the average value of 0.28 determined at high altitude in North China (Z. Wang et al., 2017), the produced pNO<sub>3</sub><sup>-</sup> throughout the whole night will decreased 7  $\mu$ g m<sup>-3</sup>. 335 The CINO<sub>2</sub> formation aloft throughout the night reach up to 2.5 ppbv, which is 336 comparable with that observed in the field measurement in North China (Tham et al., 337 2016; Z. Wang et al., 2017; X.F. Wang et al., 2017). As the error of  $pNO_3^-$  formation 338 339 simulation was subject to the ClNO<sub>2</sub> yield, higher yield would increase the model 340 uncertainty directly, probing the ClNO<sub>2</sub> yield are warranted in future studies. As for  $NO_3$  reactivity, Figure 7 shows sensitivity tests of the integral  $pNO_3^-$  formation in the 341 whole night at  $k_{NO3} = 0.001 \text{ s}^{-1}$ , 0.01 s<sup>-1</sup>, 0.02 s<sup>-1</sup>, 0.05 s<sup>-1</sup>. The integral pNO<sub>3</sub><sup>-1</sup> 342 formation was decreased when  $k_{NO3}$  vary from 0.001 s<sup>-1</sup> to 0.1 s<sup>-1</sup>, but the variation 343 ratio to base case was within  $\pm 5\%$ . The result shows the NO<sub>3</sub>-N<sub>2</sub>O<sub>5</sub> loss via NO<sub>3</sub> react 344 with VOCs in polluted wintertime is not important, which may only lead to relative 345 small uncertainties to the integral pNO3<sup>-</sup> formation calculation. Nevertheless, if N2O5 346 uptake was extremely low (e.g.  $\gamma_{N205} < 10^{-4}$ ), the uncertainty cased by NO<sub>3</sub> oxidation 347





348 will be enlarged significantly.

349

#### 350 4. Conclusion

During the wintertime, ambient  $O_3$  is often fully titrated to be zero at the ground of 351 urban Beijing due to fast reaction with NO emissions. Consequently, the near surface 352 353 air masses were chemically inert. Nevertheless, the chemical information of the air masses at higher altitudes was indicative of a reactive layer above urban Beijing, 354 355 which potentially drives fast pNO3<sup>-</sup> production via N2O5 uptake. In this study, we 356 evidenced of an additional Ox missing aloft with 25 ppb throughout the night. Based on model simulation, we found the particulate nitrate formed above 150 m can reach 357 358 up to 50 µg m<sup>-3</sup>, and enhance the surface level PM concentration significantly with 28 µg m<sup>-3</sup> after NBL breaking. Our study also demonstrated that during heavy PM 359 pollution period, the particulate nitrate formation capacity via  $N_2O_5$  uptake is easily 360 maximized in the upper layer, even N<sub>2</sub>O<sub>5</sub> uptake is as low as  $1.7 \times 10^{-3}$ , indicating the 361 362 mixing ratio of NO<sub>2</sub> aloft are directly linked to nitrate formation, and reduction of NOx is helpful to decrease nocturnal nitrate formation. Overall, this study highlights 363 the importance of the interplay between chemical formation aloft and dynamic 364 processes for probing the ground level PM pollution problem. In the future, direct 365 observations of  $N_2O_5$  and associated parameters should be performed to explore the 366 physical and chemical properties of this overhead nighttime reaction layer, and 367 reached a better understanding of the winter haze formation. 368

369

#### 370 Acknowledgements.

This work was supported by the National Natural Science Foundation of China (Grant No. 91544225, 41375124, 21522701 and 41571130021). The authors gratefully acknowledge the science team of Peking University for their general support, as well as the team running the tower platform, which enabled the vertical profile observations.





#### 377 References.

| 378 | Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly,                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 379 | K., Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.:                                 |
| 380 | Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool                                           |
| 381 | Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah's                                      |
| 382 | Salt Lake Valley, Environ Sci Technol, 51, 5941-5950, 2017.                                                                     |
| 383 | Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive uptake of N <sub>2</sub> O <sub>5</sub> |
| 384 | by aerosol particles containing mixtures of humic acid and ammonium sulfate, J Phys Chem                                        |
| 385 | A, 110, 6986-6994, 2006.                                                                                                        |
| 386 | Benton, A. K., Langridge, J. M., Ball, S. M., Bloss, W. J., Dall'Osto, M., Nemitz, E., Harrison, R.                             |
| 387 | M., and Jones, R. L.: Night-time chemistry above London: measurements of NO3 and N2O5                                           |
| 388 | from the BT Tower, Atmos Chem Phys, 10, 9781-9795, 2010.                                                                        |
| 389 | Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct                                    |
| 390 | measurement of N2O5 reactivity on ambient particles, Atmos Meas Tech, 2, 231-242, 2009.                                         |
| 391 | Brown, S. G., Roberts, P. T., McCarthy, M. C., Lurmann, F. W., and Hyslop, N. P.: Wintertime                                    |
| 392 | vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin                                  |
| 393 | Valley during the California Regional coarse PM/fine PM Air Quality Study, J Air Waste                                          |
| 394 | Manage, 56, 1267-1277, 2006.                                                                                                    |
| 395 | Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R.,                                |
| 396 | Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M.,                                      |
| 397 | Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N2O5 determined                                    |
| 398 | from aircraft measurements during the Second Texas Air Quality Study: Comparison to                                             |
| 399 | current model parameterizations, J Geophys Res-Atmos, 114, 2009.                                                                |
| 400 | Brown, S. S., Dube, W. P., Osthoff, H. D., Wolfe, D. E., Angevine, W. M., and Ravishankara, A. R.:                              |
| 401 | High resolution vertical distributions of $NO_3$ and $N_2O_5$ through the nocturnal boundary layer,                             |
| 402 | Atmos Chem Phys, 7, 139-149, 2007.                                                                                              |
| 403 | Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake, D. R.,                               |
| 404 | Tsui, W., Parrish, D. D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong                                  |
| 405 | Kong, J Geophys Res-Atmos, 121, 2457-2475, 2016.                                                                                |
| 406 | Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J.,                          |
| 407 | Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.:                                           |
| 408 | Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science,                               |
| 409 | 311, 67-70, 2006.                                                                                                               |
| 410 | Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem Soc Rev, 41,                                     |
| 411 | 6405-6447, 2012.                                                                                                                |
| 412 | Cao, J. J., Xu, H. M., Xu, Q., Chen, B. H., and Kan, H. D.: Fine Particulate Matter Constituents                                |
| 413 | and Cardiopulmonary Mortality in a Heavily Polluted Chinese City, Environ Health Persp,                                         |
| 414 | 120, 373-378, 2012.                                                                                                             |
| 415 | Chan, C. Y., Xu, X. D., Li, Y. S., Wong, K. H., Ding, G. A., Chan, L. Y., and Cheng, X. H.:                                     |
| 416 | Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in                                     |
| 417 | Beijing, Atmos Environ, 39, 5113-5124, 2005.                                                                                    |
| 418 | Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z.                              |
| 419 | F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron                                         |
| 420 | aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit,                                         |





| 421        | Atmos Chem Phys, 15, 12879-12895, 2015.                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 422        | Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J.,                                                                          |
| 423        | Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric                                                                                 |
| 424        | chemistry: Volume V - heterogeneous reactions on solid substrates, Atmos Chem Phys, 10,                                                                                   |
| 425        | 9059-9223, 2010b.                                                                                                                                                         |
| 426        | Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., and                                                                       |
| 427<br>428 | Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany,                                                                               |
| 420        | Farroro I. Cappallatti D. Maroni P. Sangiorgi G. Parrono M. G. Crocchianti S. and                                                                                         |
| 429        | Bolzacchini E: Wintertime aerosol dynamics and chamical composition across the mixing                                                                                     |
| 430        | lover over basin valleys. Atmos Environ, 56, 1/3, 153, 2012                                                                                                               |
| 431        | Farraro I. Parrone M.G. Patraccone S. Sanciorgi G. Farrini R.S. Lo Porto C. Lazzati Z.                                                                                    |
| 432        | Cocchi D. Bruno F. Greco F. Riccio A. and Bolzacchini, E. S., Ed Folto, C., Edzzati, Z.,                                                                                  |
| 433        | size distribution within and above the mixing layer over the Milan metropolitan area. Atmos                                                                               |
| 435        | Chem Phys, 10, 3915-3932, 2010.                                                                                                                                           |
| 436        | Gross, S. and Bertram, A. K.: Reactive uptake of NO <sub>3</sub> , N <sub>2</sub> O <sub>5</sub> , NO <sub>2</sub> , HNO <sub>3</sub> , and O <sub>3</sub> on three types |
| 437        | of polycyclic aromatic hydrocarbon surfaces, J Phys Chem A, 112, 3104-3113, 2008.                                                                                         |
| 438        | Gross, S., Iannone, R., Xiao, S., and Bertram, A. K.: Reactive uptake studies of NO <sub>3</sub> and N <sub>2</sub> O <sub>5</sub> on                                     |
| 439        | alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry,                                                                                |
| 440        | Phys Chem Chem Phys, 11, 7792-7803, 2009.                                                                                                                                 |
| 441        | Grzinic, G., Bartels-Rausch, T., Berkemeier, T., Turler, A., and Ammann, M.: Viscosity controls                                                                           |
| 442        | humidity dependence of N2O5 uptake to citric acid aerosol, Atmos Chem Phys, 15,                                                                                           |
| 443        | 13615-13625, 2015.                                                                                                                                                        |
| 444        | Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z., Shao, M.,                                                                        |
| 445        | Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe urban haze formation in                                                                                  |
| 446        | China, P Natl Acad Sci USA, 111, 17373-17378, 2014.                                                                                                                       |
| 447        | Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of $N_2O_5$ on                                                                               |
| 448        | sub-micron sulfate aerosols, Phys Chem Chem Phys, 5, 3453-3463, 2003.                                                                                                     |
| 449        | Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R.,                                                                          |
| 450        | Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A.,                                                                             |
| 451        | Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,                                                                            |
| 452        | Zimmermann, R., An, Z. S., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.:                                                                            |
| 453        | High secondary aerosol contribution to particulate pollution during haze events in China,                                                                                 |
| 454        | Nature, 514, 218-222, 2014.                                                                                                                                               |
| 455        | Kane, S. M., Caloz, F., and Leu, M. T.: Heterogeneous uptake of gaseous N <sub>2</sub> O <sub>5</sub> by (NH <sub>4</sub> ) <sup>2</sup> SO <sub>4</sub> ,                |
| 456        | NH <sub>4</sub> HSO <sub>4</sub> , and H <sub>2</sub> SO <sub>4</sub> aerosols, J Phys Chem A, 105, 6465-6470, 2001.                                                      |
| 457        | Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N., and Stanier, C. O.: Modeled aerosol nitrate                                                                       |
| 458        | formation pathways during wintertime in the Great Lakes region of North America, J                                                                                        |
| 459        | Geophys Res-Atmos, 119, 12420-12445, 2014.                                                                                                                                |
| 460        | Lei, H. and Wuebbles, D. J.: Chemical competition in nitrate and sulfate formations and its effect                                                                        |
| 461        | on air quality, Atmos Environ, 80, 472-477, 2013.                                                                                                                         |
| 462        | Lurmann, F. W., Brown, S. G., McCarthy, M. C., and Roberts, P. T.: Processes influencing                                                                                  |
| 463        | secondary aerosol formation in the San Joaquin Valley during winter, J Air Waste Manage, 56,                                                                              |
| 464        | 1679-1693, 2006.                                                                                                                                                          |





| 165 | Mantal T. F. Sohn M. and Wahner A. Nitrata affact in the hotorogeneous hydrolysis of                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 405 | dinitrogen pentoxide on aqueous aerosols Phys Chem Chem Phys 1 5451-5457 1999                                                              |
| 400 | Morgan W T Ouvang B Allan I D Aruffo E Di Carlo P Kennedy O I Jowe D Flynn                                                                 |
| 467 | M I Rosenberg P D Williams P I Jones R McFiggans G B and Coe H Influence                                                                   |
| 169 | of zerosal chemical composition on $N_2\Omega_2$ untake: airborne regional measurements in                                                 |
| 405 | northwestern Europe Atmos Chem Phys 15 073 000 2015                                                                                        |
| 470 | Pathak R K Wang T and Wu W S $\cdot$ Nighttime enhancement of PM <sub>2.5</sub> nitrate in ammonia-poor                                    |
| 471 | atmospheric conditions in Baijing and Shanchai: Dausible contributions of heterogeneous                                                    |
| 472 | hydrolysis of N2O5 and HNO3 partitioning. Atmos Environ, 45, 1183, 1101, 2011                                                              |
| 475 | Pathak R K Wu W S and Wang T: Summertime PMac ionic species in four major cities of                                                        |
| 475 | China: nitrate formation in an ammonia-deficient atmosphere Atmos Chem Phys 9                                                              |
| 476 | 1711-1722 2009                                                                                                                             |
| 477 | Phillins G I Thieser I Tang M I Sobanski N Schuster G Fachinger I Drewnick F                                                               |
| 478 | Borrmann S Bingemer H Lelieveld I and Crowley I N : Estimating $N_2\Omega_2$ untake                                                        |
| 479 | coefficients using ambient measurements of NO <sub>3</sub> , N <sub>2</sub> O <sub>5</sub> , ClNO <sub>2</sub> and particle-phase nitrate. |
| 480 | Atmos Chem Phys. 16, 13231-13249, 2016.                                                                                                    |
| 481 | Pusede, S. E. Duffey, K. C., Shusterman, A. A., Saleh, A., Laughner, J. L., Wooldridge, P. L.                                              |
| 482 | Zhang, O., Parworth, C. L., Kim, H., Capps, S. L., Valin, L. C., Cappa, C. D., Fried, A.,                                                  |
| 483 | Walega, J., Nowak, J. B., Weinheimer, A. J., Hoff, R. M., Berkoff, T. A., Beversdorf, A. J.,                                               |
| 484 | Olson, J., Crawford, J. H., and Cohen, R. C.: On the effectiveness of nitrogen oxide                                                       |
| 485 | reductions as a control over ammonium nitrate aerosol, Atmos Chem Phys, 16, 2575-2596,                                                     |
| 486 | 2016.                                                                                                                                      |
| 487 | Riedel, T. P., Wagner, N. L., Dube, W. P., Middlebrook, A. M., Young, C. J., Ozturk, F., Bahreini,                                         |
| 488 | R., VandenBoer, T. C., Wolfe, D. E., Williams, E. J., Roberts, J. M., Brown, S. S., and                                                    |
| 489 | Thornton, J. A.: Chlorine activation within urban or power plant plumes: Vertically resolved                                               |
| 490 | CINO <sub>2</sub> and Cl <sub>2</sub> measurements from a tall tower in a polluted continental setting, J Geophys                          |
| 491 | Res-Atmos, 118, 8702-8715, 2013.                                                                                                           |
| 492 | Sander, S. P., et al. (2011), Chemical Kinetics and Photochemical Data for Use in Atmospheric                                              |
| 493 | Studies Evaluation Number 17, JPL Publication 10-6 Rep., NASA Jet Propul. Lab, Pasadena,                                                   |
| 494 | California.                                                                                                                                |
| 495 | Seinfeld, J. H., Pandis, S.N., (2006). Atmospheric Chemistry and Physics: from Air Pollution to                                            |
| 496 | Climate Change (Second edition), John Wiley & Sons, Inc., Hoboken, New Jersey.                                                             |
| 497 | Stutz, J., Wong, K. W., Lawrence, L., Ziemba, L., Flynn, J. H., Rappengluck, B., and Lefer, B.:                                            |
| 498 | Nocturnal NO3 radical chemistry in Houston, TX, Atmos Environ, 44, 4099-4106, 2010.                                                        |
| 499 | Su, X., Tie, X. X., Li, G. H., Cao, J. J., Huang, R. J., Feng, T., Long, X., and Xu, R. G.: Effect of                                      |
| 500 | hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model                                                      |
| 501 | simulation, Sci Total Environ, 579, 221-229, 2017.                                                                                         |
| 502 | Sun, Y. L., Du, W., Wan, Q. Q., Zhang, Q., Chen, C., Chen, Y., Chen, Z. Y., Fu, P. Q., Wang, Z. F.,                                        |
| 503 | Gao, Z. Q., and Worsnop, D. R.: Real-Time Characterization of Aerosol Particle Composition                                                 |
| 504 | above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric                                                  |
| 505 | Boundary Layer and Aerosol Chemistry, Environ Sci Technol, 49, 11340-11347, 2015b.                                                         |
| 506 | Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and                                     |
| 507 | Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in                                                        |
| 508 | Beijing, China: seasonal variations, meteorological effects, and source analysis, Atmos Chem                                               |





| 509 | Phys 15 10149-10165 2015a                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 510 | Sun, Y. L., Wang, Z. F. Fu, P. O., Yang, T., Jiang, O., Dong, H. B., Li, J., and Jia, J. J.: Aerosol                  |
| 511 | composition, sources and processes during wintertime in Beijing. China, Atmos Chem Phys.                              |
| 512 | 13. 4577-4592. 2013.                                                                                                  |
| 513 | Tham, Y. J., Wang, Z., Li, O. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N.,                   |
| 514 | Bohn, B., Li, X., Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang,                        |
| 515 | T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of                         |
| 516 | the causes and impacts on ozone production in a polluted region of northern China, Atmos                              |
| 517 | Chem Phys, 16, 14959-14977, 2016.                                                                                     |
| 518 | Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N <sub>2</sub> O <sub>5</sub> hydrolysis on sub-micron organic  |
| 519 | aerosols: the effect of relative humidity, particle phase, and particle size, Phys Chem Chem                          |
| 520 | Phys, 5, 4593-4603, 2003.                                                                                             |
| 521 | Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dube, W. P.,               |
| 522 | Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large                              |
| 523 | atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature,                             |
| 524 | 464, 271-274, 2010.                                                                                                   |
| 525 | Tsai, C., Wong, C., Hurlock, S., Pikelnaya, O., Mielke, L. H., Osthoff, H. D., Flynn, J. H., Haman,                   |
| 526 | C., Lefer, B., Gilman, J., de Gouw, J., and Stutz, J.: Nocturnal loss of NOx during the 2010                          |
| 527 | CalNex-LA study in the Los Angeles Basin, J Geophys Res-Atmos, 119, 13004-13025, 2014.                                |
| 528 | Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S.,                         |
| 529 | Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton,                         |
| 530 | J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N <sub>2</sub> O <sub>5</sub> uptake coefficients and nocturnal |
| 531 | NO2 removal rates determined from ambient wintertime measurements, J Geophys                                          |
| 532 | Res-Atmos, 118, 9331-9350, 2013.                                                                                      |
| 533 | Wahner, A., Mentel, T. F., and Sohn, M.: Gas-phase reaction of N <sub>2</sub> O <sub>5</sub> with water vapor:        |
| 534 | Importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large                              |
| 535 | teflon chamber, Geophys Res Lett, 25, 2169-2172, 1998.                                                                |
| 536 | Wang, H. C. and Lu, K. D.: Determination and Parameterization of the Heterogeneous Uptake                             |
| 537 | Coefficient of Dinitrogen Pentoxide (N <sub>2</sub> O <sub>5</sub> ), Prog Chem, 28, 917-933, 2016.                   |
| 538 | Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D.                   |
| 539 | J., Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and                           |
| 540 | Zhang, Y. H.: High N <sub>2</sub> O <sub>5</sub> Concentrations Observed in Urban Beijing: Implications of a Large    |
| 541 | Nitrate Formation Pathway, Environ Sci Tech Let, 4, 416-420, 2017b.                                                   |
| 542 | Wang, H. C., Lu, K. D., Tan, Z. F., Sun, K., Li, X., Hu, M., Shao, M., Zeng, L. M., Zhu, T., and                      |
| 543 | Zhang, Y. H.: Model simulation of NO <sub>3</sub> , $N_2O_5$ and CINO <sub>2</sub> at a rural site in Beijing during  |
| 544 | CAREBeijing-2006, Atmos Res, 196, 97-107, 2017a.                                                                      |
| 545 | wang, X. F., wang, H., Xue, L. K., wang, I., wang, L. W., Gu, K. K., wang, W. H., Inam, Y. J.,                        |
| 546 | wang, Z., Yang, L. X., Chen, J. M., and wang, W. X.: Observations of $N_2O_5$ and $CINO_2$ at a                       |
| 547 | pointied urban surface site in North China: High $N_2O_5$ uptake coefficients and low ChiO <sub>2</sub>               |
| 548 | product yields, Atmos Environ, 150, 125-154, 2017.                                                                    |
| 550 | waiig, Z., waiig, W. H., Hiaili, I. J., Li, Q. I., waiig, H., weil, L., waiig, A. F., and Wang, I.: Fast              |
| 551 | observed in the nocturnal residual layer over the North China Plain. Atmos Chem Phys. 17                              |
| 552 | 12361-12378 2017                                                                                                      |
| 222 | 12501-12570, 2017.                                                                                                    |





| 553 | Watson, J. G. and Chow, J. C.: A wintertime PM <sub>2.5</sub> episode at the fresno, CA, supersite, Atmos |
|-----|-----------------------------------------------------------------------------------------------------------|
| 554 | Environ, 36, 465-475, 2002.                                                                               |
| 555 | Wen, L. A., Chen, J. M., Yang, L. X., Wang, X. F., Xu, C. H., Sui, X. A., Yao, L., Zhu, Y. H.,            |
| 556 | Zhang, J. M., Zhu, T., and Wang, W. X.: Enhanced formation of fine particulate nitrate at a               |
| 557 | rural site on the North China Plain in summer: The important roles of ammonia and ozone,                  |
| 558 | Atmos Environ, 101, 294-302, 2015.                                                                        |
| 559 | Ying, Q.: Physical and chemical processes of wintertime secondary nitrate aerosol formation,              |
| 560 | Front Environ Sci En, 5, 348-361, 2011.                                                                   |
| 561 | Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R.,        |
| 562 | Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo,               |

- P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., 563 564 Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, 565 K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic 566 aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys Res 567 Lett, 34, 2007. 568
- 569 Zhang, R. Y., Wang, G. H., Guo, S., Zarnora, M. L., Ying, Q., Lin, Y., Wang, W. G., Hu, M., and Wang, Y.: Formation of Urban Fine Particulate Matter, Chem Rev, 115, 3803-3855, 2015. 570
- 571 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto,
- 572 T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in 573 Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, 574 Atmos Chem Phys, 15, 2969-2983, 2015.
- 575 Zhong, J. T., Zhang, X. Y., Wang, Y. Q., Sun, J. Y., Zhang, Y. M., Wang, J. Z., Tan, K. Y., Shen, X. J., Che, H. C., Zhang, L., Zhang, Z. X., Qi, X. F., Zhao, H. R., Ren, S. X., and Li, Y.: 576 577 Relative Contributions of Boundary-Layer Meteorological Factors to the Explosive Growth
- 578 of PM<sub>2.5</sub> during the Red-Alert Heavy Pollution Episodes in Beijing in December 2016, J Meteorol Res-Prc, 31, 809-819, 2017. 579







580

**Figure 1.** Location of the monitoring sites used in this study, including PKU (red diamond), IAP (blue diamond), and other National Monitoring Sites (green circles). Vertical profiles of NOx and O<sub>3</sub> were collected at a tower at the IAP. Measurements of particle number and size distribution (used to calculate N<sub>2</sub>O<sub>5</sub> and particle nitrate formation) were collected from a ground site at PKU. Additional measurements on PM<sub>2.5</sub> concentrations were continuously measured at national monitoring sites throughout Beijing.







Figure 2. Time series of (a) PM<sub>2.5</sub> and O<sub>3</sub>, (b) NO and NO<sub>2</sub>, (c) temperature (T) and
relative humidity (RH), (d) wind direction (WD) and wind speed (WS) from
December 16 to 22, 2016 (CNST, Chinese National Standard Time) at PKU site in
Beijing, China. The shaded region represents the nighttime periods. Red line in panel
(a) shows an example of fast PM<sub>2.5</sub> enhancement on the night of December 19, and
the green lines are the time periods when the vertical measurements conducted in IAP
site.







Figure 3. Vertical profiles of NO and NO<sub>2</sub> (a),  $O_3$  and Ox (b) at 20:38-21:06 on the night of December 20, 2016.

600







601

602 Figure 4. O<sub>X</sub> missing case presented by the vertical profiles of (a) NO and NO<sub>2</sub>, (b)

 $O_3$  and  $O_x$  at 20:38-21:13 on the night of December 19, 2016.







605



607 morning of December 20, 2016.







609

610

611 **Figure 6.** Base case ( $\gamma$ =0.005) and sensitivity tests of the vertical profile on the night 612 of December 19 at different N<sub>2</sub>O<sub>5</sub> uptake coefficients, including (**a**) the mixing ratio 613 of N<sub>2</sub>O<sub>5</sub> at 21:00, (**b**) the integral pNO<sub>3</sub><sup>-</sup> production from sunset to 21:00, (**c**) the time 614 series of the integral pNO<sub>3</sub><sup>-</sup> formed at 240 m via N<sub>2</sub>O<sub>5</sub> uptake from sunset (17:00) to 615 sunrise (07:30, nighttime length = 14.5 h), the squares represents the pNO<sub>3</sub><sup>-</sup> equivalent 616 weight from the observed O<sub>X</sub> missing in the two vertical measurements ~21:00 and 617 ~09:30 in the following morning.







619

**Figure 7.** The dependence of pNO<sub>3</sub><sup>-</sup> convert efficiency by N<sub>2</sub>O<sub>5</sub> uptake on  $\gamma_{N2O5}$ . The initial  $S_a$  set to 3000  $\mu$ m<sup>2</sup> cm<sup>-3</sup>, the ClNO<sub>2</sub> yield is zero and k<sub>NO3</sub> is 0.02 s<sup>-1</sup>. The orange

622 region shows the convert efficiency is sensitive when  $\gamma < 0.0017$ , while the blue

region shows the convert efficiency is over 90% and insensitive when  $\gamma \ge 0.0017$ .







625

Time from sunset to sunrise (h)

**Figure 8.** Base case  $(k_{NO3}=0.02 \text{ s}^{-1})$  and sensitivity tests of the integral pNO<sub>3</sub><sup>-</sup> formed

at 240 m via N<sub>2</sub>O<sub>5</sub> uptake at different NO<sub>3</sub> reactivity (0.001 s<sup>-1</sup>, 0.01 s<sup>-1</sup>, 0.05 s<sup>-1</sup>) on the whole night of December 19, 2016.





630

Table 1. List of the parameter sets in base case and sensitivity tests.

| Cases                   | $k_{NO3} (s^{-1})$ | γn205 |  |
|-------------------------|--------------------|-------|--|
| Base case               | 0.02               | 0.005 |  |
| k <sub>NO3</sub> test 1 | 0.001              | 0.005 |  |
| k <sub>NO3</sub> test 2 | 0.01               | 0.005 |  |
| k <sub>NO3</sub> test 3 | 0.05               | 0.005 |  |
| $\gamma_{N2O5}$ test 1  | 0.02               | 0.001 |  |
| $\gamma_{N205}$ test 2  | 0.02               | 0.01  |  |
| $\gamma_{N205}$ test 3  | 0.02               | 0.05  |  |